MN100 Motion Controller
Manual

Document Revision C4
May 16, 2018

MICROKINETICS CORPORATION

3380 Town Park Drive
Suite 330
Kennesaw, GA 30144
Tel: (770)422-7845
Fax: (770) 422-7854
www.microkinetics.com

Motionet ™ MN100 Controller

Table of Contents

1 Introduction
1.1 FRAIUIES ... 4
L T o 1= o o= (T o - 4
2 Operation
2.1 USEI PrOgramSttt e et e e et e e e et e e e e e e e e eeeeeees 5
2.2 Program EXECULIONuuuuiuiiiiiiiiiiiitiitiiiieittieeteeeeeeeeeeeeeesseseeseeeeseseeeeeeeeseeeeeeeees 5
2.3 LeArN MOUE ... e e 6
2.4 ComMMANA SEL ... 6
2.5 REIUM COUESttt e e e e 9
2.6 POt StatusS ..cooeeiiee e 10
2.7 Acceleration/Deceleration Profilesccooiiiiiiii e, 11
2.8 DeViCe AQArESSINGuuuuuuuuuiiiiiiiiiiiitiiittaiiebeeabbeebbeeebeeeebee e e beeesase e e e eeeeeeeeeeeeeeeeeeees 12
2.9 Packet FOrmat ... 13
3 Installation
3.1 MN100 Installation Diagramuueuuuuimmiiiiiiiieiiiieiieeee e eeeeeeeees 15
3.2 MN100 Connection to UNODIIVEc.uiiiiiiiii e, 16
3.2 MN100 Connection to Other Driversoiiiiiiiiii e, 17
4 Technical Support
4.1 How to Obtain Technical Support ... 18
4.2 Product Return ProCedure ..ot 18
5 Software
5.1 WINAOWS 95 DLL ... 19
5.2 Windows Terminal Program (MNTERMW.EXE)ccoooiiiiiiiiiiiieeeeeees 26
5.3 DOS Library ROULINESuuuuiiiiiiiiiiiiiiiiiiiiiiiieiiieeiiieeeteeee e ee e eeeeeeees 29
5.4 DOS Terminal Program Listing (MNTERM.C) ..., 34
5.5 Distribution Disk Fil€Seoiiiii e 35
6 Applications
6.1 Feed to Length ... s 36
6.2 SWItCR TeS el e 40
6.3 Shape FOrming SYStEMcuuuiiiiiiiiiiiiiiiiiii it e e eeeeeees 44
Appendix
Appendix A - Mechanical Drawingoooio oo 45
Appendix B - Connector Pin DesCriptionScoooeiiiiiiiiiieee e 46

MO009 MicroKinetics Corporation Page 3

Motionet ™ MN100 Controller
1 Introduction

1.1 Features

The MN100 is a single axis stepper motor controller. It communicates with a master
controller or a PC via RS485 serial port. The MN100 controller can be used with our
DM8010, DR8010, DM4050, and UnoDrive or with any third party driver that accepts industry
standard step and direction commands.

The features of the MN100 include:

® RS-485 interface to PC

® Up to 127 devices can be connected on a line

® Five software selectable baud rates (9600, 19200, 38400, 57600, and 115200)
® Convenient device addressing via on-board rotary dip switches

® Easy to use command set

® Connects directly to existing drivers

® Three user programs addressable by RS-485 command or button sequence

1.2 Specifications

Electrical Specifications

Maximum Step Ratecoooviiiiiiiiie 20,000 pulses/sec

Minimum Step Rateccoooiiiiii 20 pulses/sec

Operating Voltage ..o 5 VDC 5%

Current Requirementsoouiiiiiiiiiiiiie e 100mA max.

OUIPULS .. 1 Step and 1 Direction (TTL compatible)
INPULS oo 6 TTL compatible (See Table 3)

[/O POIS ..o 1 User Defined 1/O (TTL compatible)
Output Current Drive ..o 25 mA sink or source on each output
Physical DIMeNnSIONScevviiiiiiiieiiiiiiiieeeeeeeeeeeeeeee 2.235"wx 2.325"d x 0.75"h

Working Temperature Rangeccccceii. 32°F ~158°F (0° C ~ 70° C)

Page 4 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

2 Operation

The Motionet control system operation consists of sending commands via RS485 serial con-
nection from the master which is typically a PC or panel mount LCD controller. The com-
mands are received by the individual devices and acted upon. A response from each device is
obtained upon receipt of a command and at the completion of each command with the excep-
tion of the special input which, if activated, will generate a message automatically. If a device
receives an invalid command or it detects an error in transmission a code will be returned to
the master indicating the error (see Section 2.2 Return Codes). Motion sequences can be
stored in the on-board memory which provides space for two user programs and one 'Learn’
program. The programs can be initiated by RS-485 command or by using the run switch and
program sellect buttons.

2.1 User Programs

The MN100 stores all commands in a single file. Reserved program labels #PRGM1,
#PRGM2, and #LEARN are used to denote the start and end of a "program” in the file. When
the MN100 is instructed to execute it's stored program with the RS-485 'u' command or the
local run switch, it will start at the first line in the file and stop execution when it reaches a
reserved label or the end of the file. If the MN100 is instructed to execute a specific program, it
will first locate the reserved label for that program and then start execution at the line following
that reserved label. The execution will stop when it reaches the next reserved label or the end
of the file.

NOTE: Be aware that entering learn mode will erase everything following the #LEARN label.

For this reason, you should always store #PRGM1, #PRGM2, and any other important com-
mands before the #LEARN label.

2.2 Program Execution (Local)

Programs can be executed locally using the run switch and Jog / Program Select buttons. The
following button sequences are used to tell the MN100 which user program to execute:

Hold Down Then Hold Release Release To start execution at
Run Switch Run Switch Line 1
Run Switch Jog - Run Switch Jog - #PRGM1 Label
Run Switch Jog + Run Switch Jog + #PRGM2 Label
Run Switch Jog - & + Run Switch Jog - & + #LEARN Label
MO009 MicroKinetics Corporation Page 5

Motionet ™ MN100 Cortroller
2.3 Learn Mode

A special button driven ‘Learn Mode' allows the user to jog and store several positions in the
on-board #LEARN program independant of a PC. The learn program can later be edited on a
PC to add velocities, loops, and other advanced commands. The following proceedure de-
scribes learn mode operation:

—

. Press & hold the FEEDHOLD button for 3 seconds
(LED will flash to indicate that is has entered Learn Mode)
. Use the JOG+ and JOG- buttons to move to a desired position
(LED will light solid while jogging)
3. Press & release FEEDHOLD to add the current position to the #LEARN program
(LED will flash rapidly for 1 second to indicate it has stored the position)
Repeat steps 2 & 3 until all desired movements and positions have been stored
. Press & hold the FEEDHOLD button for at least 5 seconds to exit Learn Mode
(LED will double flash 3 times then stay solid to indicate it has left Learn Mode)

N

o

The positions are stored under the reserved label #LEARN in the MN100's memory. The first
line will be a velocity command which will store the current jog speed, followed by motion
commands with absolute positions.

NOTE: If the MN100 already contains motion commands after the #LEARN label, they
will be overwritten as soon as you enter Lean Mode. It is recommended that you edit the
program on a PC, after using learn mode, and move the commands above the #LEARN
label to avoid accidental erasure.

2.4 Command Set

Table 1, on the following page lists the MN100 commands and their functions. Several com-
mands are designated as PROGRAM or REMOTE. If the command is designated as program
then that command is available only when the device is running a program from memory. The
program commands will be accepted by the slave only when program mode is enabled. If the
command is sent when in remote mode then an "INVALID COMMAND" message will be
returned. If the command is designated as remote then that command will only function when
operating in remote mode. If these commands are written to the device while in program
mode then an "INVALID PROGRAM COMMAND" message will be returned and the com-
mand will not be stored in program memory.

Page 6 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

Table 1 - Command Set

Command Name Parameter Function

D Delay 1 to 65535 Pauses for a number of milliseconds. 1000 = 1
sec

E Read Position | None Returns the position counter.

F Profile Select | 0to 5 Selects the acceleration profile (See Table 4).

G Jog Tap Steps | 1to 255 Set the number of steps per button push.

H Hold Oor1 0 - disables synchronized moves between
drivers. Execute moves immediately.

1 - enables synchronized moves between
drivers. Waits for release command before
executing move commands. (Remote)

I Set Mode Oor1 0 - absolute mode (default)

1 - incremental mode

K Release None Enables move commands if HOLD is enabled.
(Remote)

L Load Count +8,388,607 Loads the position register with the specified
data.

M Move +8,388,607 Performs an accelerated move generating the
specified number of steps. Returns exit code if
an error occurred or if the move was terminated
by a switch closure.

N Read Count None Returns the number of uncompleted steps.

O Loop Optional: Restart the program from beginning. (Program)

0 to 65535 Optionally specify number of loops, i.e. ‘O3’ loops
3 times, including the first run.

Q Abort Move None Aborts the move in progress. (Remote)

R Read Memory | None Returns the program stored in memory.

S Port Status Oto2 Returns status of the input ports (port O or port
2).

U Run Program | Optional: Runs the program stored in memory. (Remote)

1t03 Optionally specify program to start:
‘U1’ — #PRGM1, ‘U2’ - #PRGM2, ‘U3’ - #LEARN

Vv Velocity 20 to 20000 Sets the speed in steps/sec.

W Wait None Halts program until input is low. (Remote)

Y Jog Speed 20 to 20000 Sets the speed for jogging (not accelerated).

z Program Mode | None Puts the device in program mode. All
subsequent commands are written to memory
until <Ctrl-D> is received. (Remote)

? Firmware None Returns the device name and firmware revision.

Revision (Remote)

* Poll None Request response from all connected controllers.
(Remote)

& Retransmit None Request the MN slave to resend the last
message. (Remote)

~ Change Baud | Oto 4 Changes baud rate. Must be sent to all devices

Rate

simultaneously (address 0) . 0 - 9600, 1 - 19200,
2-38.4K, 3-57.6K, 4-115K. (Remote)

MO009

MicroKinetics Corporation

Page 7

Motionet ™ MN100 Controller

Configure and
Read/Write I/0
Port

Oto 3

Controls reading and writing of 1/O port.

0 - output at OVDC (low)

1 - output at 5VDC (high)

2 - input to run program on switch closure
(default)

3 - input with interrupt (high to low transition)
(Remote)

Store
Configuration

FTTT,VVVVV,I

Stores startup settings for the MN100, where:
F — Profile Select T —Jog Tap steps

V — Jog Velocity | — 1/0O configuration
(Must cycle power for settings to take effect)

Label

<text>

Marks a point in the program for branching.
(Program)

Special labels #PRGM1, #PRGM2, and #LEARN
are used to specify the start of 3 separate
programs. They must be all CAPS and can be
addressed using the optional parameter of the ‘U’
command, or by pressing and holding ‘Limit -’,
‘Limit +°, or ‘Limit - & +‘, before pressing the run
switch.

Branch

<text>
Optional:
<text>,N

(1 to 65535)

Transfers program execution to a line following a
with matching label. (Program)

Optionally specify number of times to branch, i.e.
‘AMYBRANCH,3’ will branch 3 times.

Page 8

MicroKinetics Corporation

Document Revision C5

Motionet ™ MN100 Controller

2.5 Return Codes

After a command is received the MN slave returns a single character code. Some of these
codes acknowledge a command, others provide information, and others are error messages.

Table 2 lists the value, meaning, and description for each possible return code.

Table 2 - Return Codes

Value Meaning Description
Returned

1 - Limit reached Negative limit switch contacted during a negative
direction move (motion interrupted)

2 + Limit reached Positive limit switch contacted during a positive
direction move (motion interrupt)

3 Start Command was received and is being processed.

4 Move Aborted Move aborted by closure of the abort switch (motion
interrupt).

5 Command Finished The command has been processed.

6 Valid Data Returned Data has been returned from MN slave.

7 Slave Checksum Error The MN slave received a packet in which the
received checksum does not match the calculated
checksum (transmission error).

8 Slave Address Error Master received a stop address from a MN slave
that does not match the start address.

9 Label Not Found A label was defined in the program but not found.

10 Program Abort Program aborted by ‘Q” command.

11 Running Program Program running on MN slave.

12 Invalid Command The MN slave received an invalid command.

14 Invalid Parameter The parameter is invalid for the command.

15 No Command No command in packet sent to MN slave.

16 No Move Pending The MN slave received a release command but has
not received a move command.

17 Move Already Pending A move command was received by the MN slave
but there is a move already waiting to be released.
New command is ignored.

18 Baud Rate Changed The baud rate changed correctly.

19 Slave Time-out The MN slave did not receive a complete packet
within the allotted time.

20 Busy A move is in process and no commands can be
received.

21 Master Buffer Overflow | The command string exceeded 11 bytes.

22 Present The MN slave is present at specified address.

23 Master Receive The Master received a packet in which the received

Checksum Error checksum does not match the calculated checksum
(transmission error).
24 Slave Buffer Overflow The MN slave received more than 11 bytes.
25 Message Buffer The hardware receive buffer on the MN slave
Overflow received a new character before the previous one
was retrieved.

26 Interrupt A high to low transition was detected on the 1.0 pin
(must be configured in this mode).

27 Master Time-out Master did not receive a complete packet with in the
allotted time.

28 Error Master received invalid data from a MN slave.

29 Not Available The specified port is unavailable.

30 Memory Full Program memory is full and no more commands
can be stored.

32 Move Stopped Move stopped by ‘Q’ command (decelerated move).

MO009

MicroKinetics Corporation

Page 9

Motionet ™ MN100 Controller

2.6

Port Status

The bit assignments for each input port (connector H2) is shown in Table 3. If the correspond-
ing bit is high then that input is active (switch is closed). The switches connected to these
inputs should be normally open with one side connected to the input and the other side con-
nected to ground (See application diagram figures 3 & 4). The pin connections for H2 are

shown in Appendix A.

Table 3 - Bit Values

Port 0 Port 2

Bit Function Bit Function
0 Limit- 0 I/O

1 Limit+ 1 N.A.

2 On Fullstep 2 N.A.

3 Fault 3 N.A.

4 Abort 4 N.A.

5 Feed-hold 5 N.A.

6 N.A. 6 N.A.

7 N.A. 7 N.A.

Note: Port 1 is not available on the MN100.

Page 10

MicroKinetics Corporation

Document Revision C5

Motionet ™ MN100 Controller

2.7 Acceleration/Deceleration Profiles

The acceleration/deceleration profiles are trapezoidal with the acceleration and deceleration
slopes being the same. There are four different profiles to select from and they are listed in
Table 4. Typically one of the profiles is selected and all subsequent moves will accelerate/
decelerate according to the selected profile until a new profile is selected. The table number
corresponds to the value to be entered with the profile select command (See Table 1 - Com-
mand Summary).

Table 4 - Profile Selections

Table Start Speed End Speed Accel
(Steps/Sec.) (Steps/Sec.) | (Steps/Sec?)
0 500 10000 2000
1 500 15000 5000
2 500 18000 8000
3 500 20000 10000
4 500 20000 20000
5 500 20000 40000

A graph of the acceleration/deceleration profiles are shown in Figure 1 below.

22,500 =

F3 F4 _F5

20,000 =

F2

17,500 =

}

F1

5000 —

12,500 =

Fi

10,000 =

SPEED |STEPS/SEC

7500 =

5000 =

2,500

I | | | | | 1 | | | 1
30 40 a0 B0 70 &0 a0 100 1o 120 130

POSITION (STEPS IN THOUSANDS)

Figure 1 - Acceleration/Deceleration Profiles

MO009 MicroKinetics Corporation Page 11

Motionet ™ MN100 Controller

2.8 Device Addressing

The address for each device is set via two rotary dip switches (SW1 and SW2). Each device
must have a unique address between 1 and 127 decimal (1 - 7f hexadecimal). Setting the
address for a device is accomplished by setting SW1 and SW2. Table 5 below shows the

addresses and the corresponding switch settings.

Table 5 - Address Switch Settings.

Decimal | Hex | SW1 | SW2 Decimal | Hex | SW1 | SW2 Decimal | Hex | SW1 | SW2

0 0 0 0 43 2B 2 B 86 56 5 6
1 1 0 1 44 2C 2 C 87 57 5 7
2 2 0 2 45 2D 2 D 88 58 5 8
3 3 0 3 46 2E 2 E 89 59 5 9
4 4 0 4 47 2F 2 F 90 5A 5 A
5 5 0 5 48 30 3 0 91 5B 5 B
6 6 0 6 49 31 3 1 92 5C 5 C
7 7 0 7 50 32 3 2 93 5D 5 D
8 8 0 8 51 33 3 3 94 5E 5 E
9 9 0 9 52 34 3 4 95 5F 5 F
10 A 0 A 53 35 3 5 96 60 6 0
11 B 0 B 54 36 3 6 97 61 6 1
12 C 0 C 55 37 3 7 98 62 6 2
13 D 0 D 56 38 3 8 99 63 6 3
14 E 0 E 57 39 3 9 100 64 6 4
15 F 0 F 58 3A 3 A 101 65 6 5
16 10 1 0 59 3B 3 B 102 66 6 6
17 11 1 1 60 3C 3 C 103 67 6 7
18 12 1 2 61 3D 3 D 104 68 6 8
19 13 1 3 62 3E 3 E 105 69 6 9
20 14 1 4 63 3F 3 F 106 B6A 6 A
21 15 1 5 64 40 4 0 107 6B 6 B
22 16 1 6 65 41 4 1 108 6C 6 C
23 17 1 7 66 42 4 2 109 6D 6 D
24 18 1 8 67 43 4 3 110 6E 6 E
25 19 1 9 68 44 4 4 111 6F 6 F
26 1A 1 A 69 45 4 5 112 70 7 0
27 1B 1 B 70 46 4 6 113 71 7 1
28 1C 1 C 71 47 4 7 114 72 7 2
29 1D 1 D 72 48 4 8 115 73 7 3
30 1E 1 E 73 49 4 9 116 74 7 4
31 1F 1 F 74 4A 4 A 117 75 7 5
32 20 2 0 75 4B 4 B 118 76 7 6
33 21 2 1 76 4C 4 C 119 77 7 7
34 22 2 2 77 4D 4 D 120 78 7 8
35 23 2 3 78 4E 4 E 121 79 7 9
36 24 2 4 79 4F 4 F 122 7A 7 A
37 25 2 5 80 50 5 0 123 7B 7 B
38 26 2 6 81 51 5 1 124 7C 7 C
39 27 2 7 82 52 5 2 125 7D 7 D
40 28 2 8 83 53 5 3 126 7E 7 E
41 29 2 9 84 54 5 4 127 7F 7 F
42 2A 2 A 85 55 5 5

Page 12

MicroKinetics Corporation

Document Revision C5

Motionet ™ MN100 Controller

2.9 Data Packet Format

The following information is provided so you can write your own communications drivers.
However, the MN Library includes routines that handle data transmission and reception with-
out the need to write your own routines.

The data is transmitted in packets from the PC or master controller to each device. The

packet consist of the address, a string of ASCII characters representing the command and

data, and the checksum. The packet format for data being sent to a device is shown below.
Device address | Command | Parameter | Device address | Checksum

Note: Spaces are not allowed in the packet (command string).

Device address - address of the device that is to receive the packet. The high bit of the

address must be setto 1. The setting of the high bit of the address is
handled by the MN Library routines.

Command - a command that is listed in Table 1. Must be one of the commands listed in
the table.
Parameter - number required by the command (See Table 1 - Command Summary).

The parameter must be in ASCII format with the value between 48 ('0') and
57 ('9'). Also, the data must be within the specified range for the command.

Checksum - a 7-bit checksum that is the sum of all of the characters in the packet up to
the checksum. This value is calculated by adding the values for each
character in the packet then ANDing the checksum with 127 decimal (7f
hexadecimal) to clear the high bit. Calculation of the checksum and clear-
ing the high bit is handled by the MN Library routines.

example:
If sending the command "M1000" to device 5, the packet in ASCII representation (in hexadeci-
mal) would appear as follows:

M1 0O0O
85|4D|31|30|30|30|85|18
| | |---- Checksum
| |--=m--- Device Address
| Device Address

The packet format for data being returned from a device is shown below.
Device address | Command | Return value | Return code | Device address | checksum

Device address - address of the device sending the packet to the PC or master controller.

MO009 MicroKinetics Corporation Page 13

Motionet ™ MN100 Controller

The high bit of the address is set to 1 by the device.

Return value - Numerical value returned only if required by command.

Return code - single character value that indicates if an error has occurred or not (See
Table 2 - Return Codes).

example:

If device number 5 is returning 5455 based on the Readcount ("E") command then the packet

in ASCII representation (in hexadecimal) would appear as follows:

ES5 4505
85[45|35|34|35|35|06|85|28
| | | [|-Checksum
| | |---—--Device Address
| [--------- Return Code
| Device Address

Page 14 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

3 Installation

3.1 MN100 Installation Diagram

The diagram below shows how to connect multiple MN100 units to the master controller. The
RS485 is a multidrop configuration and each unit is connected to the same twisted pair cable
as shown.

MASTER
(PC)
100 Rl 00 Al 100 100
(n L2 (3 iM o= 128 }E
k]
MY
Frd
Ly

Figure 2- Installation Diagram
Multiple MN100s

NOTE: When installing multiple units make sure the termination resistor (RT) is re-
moved from all of the devices except for the last one on the bus. If the resistors are not
removed communications errors will occur.

MO009 MicroKinetics Corporation Page 15

Motionet ™ MN100 Ceontrollen
3.2 MN100 Connection to UnoDrive

The MN100 can plug directly into an UnoDrive using connector H4. It can also, be wired to
other drivers using screw terminal H1. When using an UnoDrive you must connect Vmm,
Ground, and +5VDC to H3 (see Figure 1 below). When using any other driver you only need
to connect +5VDC and Ground to H3 (See Figure 4 on the following page).

T ;h POVERSS

(c+) aNno
(or+) aND

- Oanor+
OANG+

o=

JE= IMQIHI'»“] MN100

L |5 Vmm GND +3VDC
J I:I O To RS485
10

1 1 .
‘ o | |Re 0 | 0O oS serial port
J HS

MI L
H 1 10
H1 UHODIIVG H?2 [0000000000
18K : SR
7 33<88S
< jL 1))
€ U

o

Jog Enable /

Figure 3 - Installation Diagram - UnoDrive

Page 16 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Centrollen
3.3 MN100 Connection to Other Drivers

The diagram below shows a typical wiring diagram for using the MN100 with most drivers.
Note that H1 on the MN100 is connected one to one to the driver input connector on the
DM4050, DR8010, and DM8010.

PHASE B g
PHASE B+
PHASE & G M]
RS485 PHASE AHCH
to senal GROND | S
port |

WDG GND Vinm

MN100 13 [0

8
§

GND (+5}
GND
Vmnm

POWER SUPPLY

Figure 4 - Installation Diagram for
DM4050, DM8010, and DR8010

MO009 MicroKinetics Corporation Page 17

Motionet ™ MAN100 Contreller
4 Technical Support

Should you need help in identifying and correcting a problem, the MicroKinetics engineering
staff is ready to assist you during business hours. You should refer to the documentation and
verify any described adjustments before calling. Be prepared to supply the model number of

all components and any software and/or dip switch or jumper settings.

4.1 How to Obtain Technical Support

Technical support is available as follows:

Via Email
Email MicroKinetics with a description of problem symptoms to
helpdesk@microkinetics.comwhereitisreviewedandanswereddaily.

Via Fax
Fax a detailed description of the problem to 770-422-7854 including your fax
and voice number. An engineer will call to help you.

Via Telephone
Call our main line directly and request Hardware Tech Support. The number is
770-422-7845.

4.2 Product Return Procedure

The technical support staff can determine if the problem requires returning the
product for testing and can give you an RMA (Return Merchandise Authorization)
number to write on the outside of the package for proper routing. This improves
repair turnaround time.

When returning an electronic product, always pack in the original antistatic bag.
If original packaging is not available, wrap in aluminum foil and place in container
to withstand shipping and handling. Always insure product with shipping
company for full value.

If a product is returned to us for repair, is tested and found to operate within the
rated specifications, a nominal testing fee will apply. Please inquire as to the
testing charge at the time you obtain the RMA number.

Page 18 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

5 Software
5.1 Windows 95 DLL

This section describes the routines in the 32-bit DLL (MNW.DLL). This software is supplied
with the MN100 and runs under Win95. These functions can be called from the DLL using
LoadLibrary and GetProcAddress as shown below.

// Load and get the address of the DLL.

hLibrary = LoadLibrary("MNW.DLL");

if (hLibrary == NULL)

{
MessageBox(NULL, "Could not open DLL - MNW.DLL", NULL, MB_OK);
return false;

}

/I Get the address of the specific procedure you wish to call.

mninitCommDLL = (INITCOMMPROC)GetProcAddress(hLibrary, "mninitComm");

if (!mnInitCommDLL)

{
MessageBox(NULL, "Cannot load mnInitComm from DLL", NULL, MB_OK);
return false;

}

// Call the function

rtn_code = (mnInitCommDLL)(&port, &rate, &size);

// Close the library

FreeLibrary(hLibrary);

The function names are defined as extern "C" to avoid name mangling and the
__declspec(dllexport) WINAPI declaration is used. Also, the names are case sensitive and do
not have a leading underscore.

To interface to the DLL use the type definitions and declarations shown below. The type
definitions are defined in the MNTERMW.H header file supplied with the MN100 software. For
an example on how to use these functions in Visual C from Borland see the C++ programs
shown on the distribution disk for the MNTERMW.EXE program.

typedef int (*CHKRXDQUEPROC)(int *);

typedef int (*CLOSECOMMPROC)(int *);

typedef int (*INITCOMMPROC)(int *, int *, int *);

typedef int (*POLLDEVICESPROC)(int *, int *, int *, char *, int *);
typedef int (*PROCESSCHARPROC)(char *, int *, int *, char *);
typedef int (*SETBAUDPROC)(int *, int *);

typedef int (*VERSIONPROC)(int *);

typedef int *XMITPACKETPROC)(char *, char *, int *);

MO009 MicroKinetics Corporation Page 19

Motionet ™ MN100 Controller

HINSTANCE hLibrary;

CHKRXDQUEPROC mnChkRxDQueDLL;
CLOSECOMMPROC mnCloseCommDLL;
INITCOMMPROC mninitCommDLL;

POLLDEVICESPROC mnPollDevicesDLL;
PROCESSCHARPROC mnProcessCharDLL;

SETBAUDPROC mnSetBaudDLL;
VERSIONPROC mnVersionDLL;
XMITPACKETPROC mnXmitPacketDLL;

You can also convert the DLL to a library and use the library at link time (see the documenta-
tion for the compiler you are using). If you use the library, you still need to distribute the
MNW.DLL along with the EXE. The library only provides linkage information for the functions
in the DLL and it does not include the actual code from the DLL.

extern "C" int __declspec(dllimport) WINAPI mnChkRxDQue(int *);

extern "C" int __declspec(dllimport) WINAPI mnCloseComm(int *);

extern "C" int __declspec(dllimport) WINAPI mninitComm(int *, int *, int *);

extern "C" int __declspec(dllimport) WINAPI mnPollDevices(int *, int *, int *, char *, int *);
extern "C" int __declspec(dllimport) WINAPI mnProcessChar(char *, int *, int *, char *);
extern "C" int __declspec(dllimport) WINAPI mnSetBaud(int *, int *);

extern "C" void __declspec(dllimport) WINAPI mnVersion(int *);

extern "C" int __declspec(dllimport) WINAPI mnXmitPacket(char *, char *, int *);

The following section describes each of the routines This section describes the routines in the
Windows DLL supplied with the MN100. Each function in the DLL returns a value >= 0 on
success, and < 0 if a communications error occurred. The only exception is mnVersion which
does not have a return value. Also, see the MNTERMW.H header files for the definitions for
the com ports, baudrates, and errors. The descriptions follow the format outlined below.
Purpose Describes the use of the procedure.

Syntax Shows the proper syntax for calling the procedure using C/C++.

Prototype Function prototype for the DLL and Library.

Parameters Describes each parameter used in the calling syntax.

Example Shows the use of the routine in a typical code fragment.

Page 20 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

mnChkRxDQue

Purpose mnChkRxDQue determines if data has been received. Returns 1 if data has
been received, returns 0 otherwise.

Syntax DLL: data_avail = (ChkRxDQueDLL)(&port);
Library: data_avail = mnChkRxDQue(&port);

Prototype DLL: typedef int (*CHKRXDQUEPROC)(int *);
Library: extern "C" int __declspec(dllimport) WINAPI mnChkRxDQue(int *);

Parameters port - value of selected com port.

Example int data_avalil;
int port = COMT1;

data_avail = (ChkRxDQueDLL)(&port);
if (data_avail)

mnCloseCommPort

Purpose To close the open com port. This must be done to release the com port and
interrupt when exiting your program.

Syntax DLL: rtn_code = CloseComPortDLL (&port)
Library: rtn_code = mnCloseComPort(&port);

Prototype DLL: typedef int (*CLOSECOMMPROC)(int *);
Library: extern "C" int __declspec(dllimport) WINAPI mnCloseComm(int *);

Parameters port - value of selected com port.
Example int port = COM1;

rtn_code = (CloseComPortDLL)(&port);

MO009 MicroKinetics Corporation Page 21

Motionet ™ MN100 Controller

mnlnitCommPort

Purpose

Syntax

Prototype

Parameters

Example

Initializes the selected com port.

DLL: rtn_code = (InitCommPortDLL)(&port, &baudrate, &buffer);
Library: rtn_code = mnInitComPort(&port, &baudrate, &buffer);

DLL: typedefint (*INITCOMMPROC)(int *, int *, int *);
Library: extern "C" int __declspec(dllimport) WINAPI mninitComm(int *, int *, int
*);

port - value of selected com.
baudrate - value at which to set the com port baudrate.
buffer - size of receive and transmit buffers

int port = COM1;

int baudrate = B9600; // set for 9600 baud
int buffer = Size128;

int rtn_code;

rtn_code = (InitComPortDLL)(&port, &baudrate, &buffer);
if (rtn_value > 0)
{
printf("Could not initialize specified com port.");
exit(0);
}

mnPollDevices

Purpose Polls all devices on the bus and sets a corresponding flag in the device_flag
array for each active device that is found.

Syntax DLL: rtn_code = (PollDevicesDLL)(device_flag, &port, &device_count, message,
&buffer);

Library: rtn_code = mnPollDevices(device_flag, &port, &device_count, message,
&buffer);

Prototype DLL: typedefint (*POLLDEVICESPROC)(int *, int *, int *, char *, int *);
Library: extern "C" int __declspec(dllimport) WINAPI mnPollDevices(int *, int ¥,
int *, char *, int *);

Parameters device_flag - integer array, = 1 if device is present at that address 0 otherwise.
port - value of selected com.
buffer - size of receive and transmit buffers
message - error message returned by function.
device_count - number of devices found

Page 22 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

If return value is < 0 then a communication error has occurred.

Example int device_flag[128];
int port = COM1;
int buffer = Size128;
int device_count;
char message[80];
rtn_code = (PollDevicesDLL)(device_flag, &port, &device_count, message,
&buffer);
if (device_flag[1] == 1)

printf("Device found at address 1");
else
printf("No device found at address 1");

mnProcessChar

Purpose To process the incoming characters and respond accordingly.

Syntax DLL: rtn_code = (ProcessCharDLL)(input_string, &port, rec_address, message);
Library: return_code = mnProcessChar(input_string, &port, rec_address, mes-
sage);

Prototype DLL: typedef int (*PROCESSCHARPROC)(char *, int *, int *, char *);
Library: extern "C" int __declspec(dllimport) WINAPI mnProcessChar(char *, int
.int, char *);

Parameters input_string - string returned from the device.
port - value of selected com port.
rec_address - address of the device sending the information.
message - error message returned by function.
return_code - indicates the response of the device . The function returns 0 if a
complete string has not been received. Otherwise it returns a code indicating the
status/error (See Table 2 - Return Codes). The codes are defined MN_x.H.

Example int port = COM1;
char input_string[15];
char rec_address|[2];
char message[80];
return_code = (ProcessCharDLL)(input_string, &port, rec_address, message);
switch(return_code)

{
}
MO009 MicroKinetics Corporation Page 23

Motionet ™ MN100 Controller

mnSetBaud

Purpose Sets the baudrate for the open COM port

Syntax DLL: rtn_code = (SetBaudDLL)(&port, &baud);
Library: rtn_code = mnSetBaud(&port, &baud);

Prototype DLL: typedef int (*SETBAUDPROC)(int *, int *);
Library: extern "C" int __declspec(dllimport) WINAPI mnSetBaud(int *, int *);

Parameters port - value of selected com port
baud - integer indicating desired baudrate

Example int port = COM1;
int baud = Baud9600;

rtn_value = (SetBaudDLL)(&port, &baud);
mnVersion
Purpose Gets the version number of the DLL being used.

Syntax DLL: (VersionDLL)(&revision);
Library: mnVersion(&revision);

Prototype DLL: typedef int (*VERSIONPROC)(int *);
Library: extern "C" void __declspec(dllimport) WINAPI mnVersion(int *);

Parameters revision - is an integer that is 100 times the revision number. i.e. 310 for rev. 3.1.
Example int revision;

(VersionDLL)(&reversion);
printf("Driver Version: %4.1f\n", (double)revision/100);

Page 24 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

mnXmitPacket
Purpose Transmits the command packet to the addressed device.

Syntax DLL: rtn_code = (XmitPacketDLL)(command_string, &address, &port);
Library: rtn_code = mnXmitPacket(command_string, &address, &port);

Prototype DLL: typedef int *XMITPACKETPROC)(char *, char *, int *);
Library: extern "C" int __declspec(dllimport) WINAPI mnXmitPacket(char *, char
int);

Parameters command_string - command string to be transmitted.
address - address of device to send packet to.
port - value of selected com port

Example int port = COMH1;
char command_string[15];
char address;

rtn_code = (XmitPacketDLL)(command_string, address, port);

MO009 MicroKinetics Corporation Page 25

Motionet ™ MN100 Controller
5.2 Windows Terminal Program - MNTERMW.EXE

The Win95 terminal program (MNTERMW.EXE) provides an interface to the MN100 devices.
There are several parts to the terminal program including Command Editor windows, Program
Editor windows, and a Device selection window. The Command Editor windows have a De-
vice, Port, Baud, Window, and Help menu when it is active. The Program Editor adds two
menus when it is active - Edit and Program. The user can open multiple command editors and
program editors and have each window address a different device.

When the MNTERMW program is started it initializes the com port, polls for active devices and
opens a command window with the address of the first device found.

NOTE: The MNTERMW program matches its baudrate with the baudrate of the con-
nected devices at start-up. Also, all of the connected devices must be operating at the
same baudrate. The power-up baudrate of the MN100 is 9600.
Device Menu
Save Saves the current configuration for the port and baud rate.
PollDevices Sends out the poll command (*) to determine which devices are active
Select Device Allows the user to select a different device address for the active window.
Exit Exits the program when selected.
Port Menu
The port menu allows the user to select the COM port to use. This value is the first parameter
stored in the MNTERMW.DEF configuration file. This file can be changed using a text editor.
The values for the ports is shown below.

COM1 -0

COM2 -1

COM3 -2
COM4 -3

Page 26 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

Baud Menu

The baud menu allows the user to select the baud rate to use. This value is the second pa-
rameter stored in the MNTERMW.DEF configuration file. The values for the ports is shown
below.

9600 - 5

19200 - 6

38400 -7

57600 - 8

115200 - 9
Edit Menu
Cut Cuts the selected text from the window
Copy Copies the selected text to the clipboard.
Paste Paste the copied text at the current cursor position.
Select All Highlights all of the text in the active window.
Delete Deletes the selected text.

Program Menu

These items apply to the active window and the device it addresses.

Read Reads the program from the device.

Write Writes the window buffer to the MN100 program memory.
Clear Clears the window buffer.

Execute Executes the program stored in program memory.

Home Returns the motor to the home position.

Stop Stops program execution (decelerates to stop).

MO009 MicroKinetics Corporation Page 27

Motionet ™ MN100 Controller

Window Menu

Tile Tiles the open windows.
Cascade Cascades the open windows.
Arrange Icons Arranges icons of minimized windows.

New Command Editor Opens a new command editor window.

New Program Editor Opens a new program editor window.
Close Closes the active window.
Help Menu

About Shows about box for program.

Page 28 MicroKinetics Corporation

Document Revision C5

Motionet ™ MN100 Controller

5.3 DOS Library Routines

This section describes the routines in the DOS Libraries supplied with the MN100 . The de-

scriptions follow the format outlined below.

Purpose Describes the use of the procedure.

Syntax Shows the proper syntax for calling the procedure using C/C++.

Prototype Shows the prototype for the function (Supplied in mnterm.h).

Parameters Describes each parameter used in the calling syntax.

Example Shows the use of the routine in a typical code fragment.

mnChkRxDQue

Purpose mnChkRxDQue determines if data has been received. Returns 1 if data has

been received, returns 0 otherwise.

Syntax data_avail = mnChkRxDQue(port);
Prototype int mNChkRxDQue(int);
Parameters port - value for selected com port.
Example int data_avalil;

int port = COM1;

data_avail = mnChkRxDQue(port);

if (data_avail)

MO009 MicroKinetics Corporation Page 29

Motionet ™ MN100 Controller

mnCloseComPort

Purpose To close the open com port. This must be done to release the com port and

interrupt when exiting your program.

Syntax mnCloseComPort(port);
Prototype int mnCloseComPort(int);
Parameters port - value of selected com.
Example int port = COM1;

mnCloseComPort(port);

mnlnitComPort

Purpose mniInitComPort initializes the selected com port.
Syntax rtn_value = mninitComPort(port, irq, baudrate, buffer);
Prototype mninitComPort(int, int, int, int)

Parameters port - value of selected com.

irq - interrupt number to use with the selected com port.

baudrate - value at which to set the com port baudrate.
buffer - size of receive and transmit buffers

Example int port = COM1;
intirq =4;
int baudrate = B9600; // set for 9600 baud
int buffer = Size128
int rtn_value;

rtn_value = mninitComPort(port, irq, baudrate, buffer);
if (rtn_value > 0)
{
printf("Could not initialize specified com port.");
exit(0);
}

Page 30 MicroKinetics Corporation

Document Revision C5

Motionet ™ MN100 Controller

mnPollDevices

Purpose

Syntax
Prototype

Parameters

Example

mnPollDevices polls all devices on the bus and sets a corresponding flag in
the device_flag array for each active device that is found.

mnPollDevices(device_flag, port, buffer, message)
int mnPollDevices(int *, int, int, char *);

device_flag - integer array containing the flag value for each device. If the
flag for a given device is 1 then a device is present at that address.

port - value of selected com.

buffer - size of receive and transmit buffers

message - error message returned by function.

int device_flag[128];
int port = COM1;

int buffer = Size128;
char message[80];

mnPollDevices(device_flag, port, buffer, message);
if (device_flag[1] == 1)

printf("Device found at address 1");
else

printf("No device found at address 1");

MO009

MicroKinetics Corporation Page 31

Motionet ™ MN100 Controller

mnProcessChar
Purpose To process the incoming characters and respond accordingly.
Syntax return_code = mnProcessChar(input_string, port, rec_address, message);
Prototype int mnProcessChar(char *, int, int *, char *);
Parameters input_string - string returned from the device.
port - value of selected com.
rec_address - address of the device sending the information.
message - error message returned by function.
return_code - indicates the response of the device . The function returns 0 if
a complete string has not been received. Otherwise it returns a code indicat-
ing the status/error (See Table 2 - Return Codes). The return codes are
defined in the MN_x header files. If data is received, the "input_string" holds
the command followed by the ASCII data.
Example int port = COM1;
char input_string[15];
char rec_address|[2];
char message[80];
return_code = mnProcessChar(input_string, port, rec_address, message);
switch(return_code)
{
}
mnVersion
Purpose mnVersion returns the version number of the software that is being used.
Syntax mnVersion(&revision);
Prototype mnVersion(int *)
Parameters revision - is an integer that is 100 times the revision number. i.e. 310 for rev.
3.1. To use the number as a string, use the following formula.
Example int drvrev;

mnVersion(&drvrev);
printf("Driver Version: %4.1f\n", (double)drvrev/100);

Page 32

MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

mnXmitPacket

Purpose Transmit the command packet to the addressed device.
Syntax mnXmitPacket(command_string, address, port, buffer);
Prototype mnXmitPacket(char *, char, int, int);

Parameters command_string - command string to be transmitted.

address - address of device to send packet to.
port - value of selected com port
buffer - size of receive and transmit buffers

Example int port = COM1;
int buffer = Size128;
char command_string[15];
char address;

mnXmitPacket(command_string, address, port, buffer);

MO009 MicroKinetics Corporation Page 33

Motionet ™ MN100 Controller
5.4 DOS Terminal Program - MNTERM.EXE

Study and use this code for reference. Feel free to copy and paste into your program any
portion you need.

The terminal program controls communication between the PC and the Motionet series of
motion controllers. It takes the input typed in by the user and assembiles it into a packet along
with the board address and checksum and sends the packet out the serial port. The device
that has the matching address responds to the command and returns a START code to indi-
cate it received the data. The device then processes the data and either returns the required
data or a code (See Table 2 - Return Codes for a description of each code) indicating it com-
pleted the command or that there was an error.

Once a device is busy it will not accept any other command except the abort move 'Q' com-
mand. If any other command is received during a move, the addressed device will return a
code indicating that it is busy. If a command is sent to a device while it is processing the
previous command (other than the move command) the new command is ignored. Make sure
you wait for the return code or data following the START code before sending the same device
another command.

The baud rate can be changed from the terminal program. The baud rates supported are
9600, 19200, 38400, 57600 and 115200. The default baud rate is 9600. To change the baud
rate type <#> followed by the number corresponding to the desired baudrate (See selections
below).

0 - 9600 baud

1 -19200 baud
2 - 38400 baud
3 - 57600 baud
4 - 115200 baud

To communicate with a different device, type <@> followed by the device number (0 - 127). If
a command is sent to address 0 all of the connected devices will respond to it. None of the
devices should have their addresses set to 0.

Page 34 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

5.5 Distribution Disk

The files listed in each section below are included on the distribution disk. Create a directory
on your hard drive and copy the files from the appropriate directory on the floppy disk to the
directory you created.

5.5.1 Win95
ABOUT1.CPP 1,000 09-19-97 5:40p
ABOUT1.H 1,029 09-19-97 5:17p
COMENTRY.CPP 9,754 10-07-97 12:19p
COMENTRY.H 3,173 10-06-97 3:09p
DEV_SEL.CPP 3,005 10-07-97 11:30a
DEV_SEL.H 1,018 09-25-97 12:03p
MNFORM.CPP 31,231 10-08-97 5:21p
MNFORM.H 4,362 10-06-97 3:09p
MNTERMW.CPP 3,206 10-08-97 5:51p
MNTERMW.H 5,747 10-08-97 5:21p
MNTERMW.EXE 328,704 10-08-97 5:29p
MNTERMW.MAK 2,046 10-08-97 3:22p
MNTERM .DEF 6 10-08-97 3:38p
MNW.DLL 254,464 10-08-97 5:32p
PRG_EDIT.CPP 10,757 10-07-97 12:22p
PRG_EDIT.H 3,923 10-07-97 11:48a
WSC.DLL 119,808 09-15-97 3:26p

NOTE: You must distribute MNW.DLL and WSC.DLL with your EXE.

5.5.2 DOS
MNTERM.H 6,585 10-08-97 4:41p
MNTERM.C 20,509 10-08-97 4:42p
MNTERM.EXE 55,707 10-08-97 4:49p
MN_S.H 9,733 10-08-97 4:37p
MN_S.LIB 23,040 10-08-97 4:44p
MN_M.H 9,797 10-08-97 4:37p
MN_M.LIB 23,552 10-08-97 4:44p
MN_C.H 9,720 10-08-97 4:36p
MN_C.LIB 23,552 10-08-97 4:44p
MN_L.H 9,809 10-08-97 4:36p
MN_L.LIB 23,552 10-08-97 4:44p
FEEDLEN.C 6,849 07-10-97 10:47a
FEEDLEN.EXE 36,313 07-10-97 10:24a
SHAPEFRM.C 6,847 07-10-97 10:44a
SHAPEFRM.EXE 36,759 07-10-97 10:49a
SWTESTER.C 6,461 07-10-97 10:53a
SWTESTER.EXE 27,448 07-10-97 10:56a

MO009 MicroKinetics Corporation Page 35

Motionet ™ MAN100 Contreller
6 Applications

6.1 Feed to Length

The MN100 can be used in a feed to length application by specifying the following parameters.

Distance
Number of times to repeat operation

SOLENDID

TROL RELAY

Figure 5 - Feed to Length

The following is a source listing of a feed to length application. You need to change the follow-
ing definitions to match your application and recompile the program.

DRIVER_RES

REVS_PER_INCH

STEP_RATE
it
I
I This program performs a Feed to length to length operation.
/l The inputs are distance, driver resolution, revolutions/inch and
I the number of times to perform the operation.

ittt
#include <stdio.h>

#include <conio.h>

#include <dos.h>

#include <stdlib.h>

#include <string.h>

#include "mn_cs.h"

#define MOTOR_RES 200

#define DRIVER_RES 8 // driver resolution (steps/fullstep)

#define REVS_PER_INCH 10.0f /I number of turns of motor to move device an inch
#define STEP_RATE 5000 // steps/sec

/l see mn_cs.h for definitions

#define PORT_ID PORTO /I COM1 - change for your system

#define BAUDRATE B9600 // 9600 Baud (default for MN100)

#define INT_IRQ IRQ4 // use IRQ4

Page 36 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

COM com_id;

float distance;

int i, device_flag]MAX_BOARDS];

char command_string[15], data_string[15];

int process_rtn_packet(COM, long *);
void perform_operation(long, int, COM);

void main()

{
long data, steps;
int device_address, num_operations;

textmode(C80);
clrscr();

com_id = init_com_port(PORT_ID, INT_IRQ, BAUDRATE);
if (com_id == NULL)

{
printf("\n\r Could not initialize com port.");
printf("\n\r Press any key to exit program");
getch();
clrscr();
exit(0);

}

printf("\n\r Checking for an active device.");
check_devices(device_flag, com_id);
device_address = 0;

/[1f multiple devices are connected and active, the
// device with the lowest address will be used.

for (i = 0; i < MAX_BOARDS; i++)

{
if (device_flagl[i])
{
device_address = i;
break;
1
1
if (!device_address)
{
printf("\n\r No active device found. Press any key to exit");
close_com_port(com_id);
getch();
clrscr();
exit(0);
}
clrscr();

send_packet("f1", device_address, com_id); // set profile
process_rtn_packet(com_id, &data);

sprintf(command_string, "v%d", STEP_RATE); // set velocity
send_packet(command_string, device_address, com_id);
process_rtn_packet(com_id, &data);

send_packet("w1", device_address, com_id);// /0O is output @ logic 1 (off)
process_rtn_packet(com_id, &data);

printf("Enter distance to move (inches): ");
scanf("%f", &distance);

printf("Enter number of operations: ");
scanf("%d", &num_operations);

MO009 MicroKinetics Corporation Page 37

Motionet ™ MN100 Controller

clrscr();
steps = (long)(distance * REVS_PER_INCH * DRIVER_RES * MOTOR_RES);

for (i = 0; i < num_operations; i++)
{
printf("\n\r%d: ", i+1);
perform_operation(steps, device_address, com_id);

}

close_com_port(com_id);
1
void perform_operation(long steps, int address, COM id)

{

long data;

send_packet("l0", address, id); // load counter with 0
process_rtn_packet(id, &data);

sprintf(command_string, "m%Id", steps);// perform move
send_packet(command_string, address, id);
process_rtn_packet(id, &data);

send_packet("e", address, id); // get absolute counter value
process_rtn_packet(id, &data);
if (data != steps) // compare steps moved to steps commanded

printf("\n\rMove not completed."); // if I= move not completed
printf("\n\rPress any key to continue.");
getch();

send_packet("w0", address, id); // Turn on output
process_rtn_packet(com_id, &data);
printf("Output ON! ");

delay(1000); // delay 1 second

send_packet("w1", address, id); // Turn off output
process_rtn_packet(com_id, &data);
printf("Output OFF!");

1

int process_rtn_packet(COM id, long *data)

{
int return_code, start_flag;
int i, rec_address|[2];
char input_string[15];

while(1)
{
if (chk_RxD(id)) /I check receive buffer for data
{
return_code = process_char(input_string, id, rec_address);
if (return_code == 0)
continue;
else if (return_code == START)
continue;
else if (return_code == DONE)
break;
else if (return_code == VALID_DATA)

{
i=1;

Page 38 MicroKinetics Corporation

Document Revision C5

Motionet ™ MN100 Controller

while (input_string[i] != 0)

{
data_string[i-1] = input_string[i;
i++;
}
*data = atol(data_string);
break;
}
else if (return_code < 0x20)
{
printf("\n\rError detected or move stopped");
printf("\n\rby external switch closure.");
break;
1

}
}

return(return_code);

MO009 MicroKinetics Corporation Page 39

Motionet ™ MN100 Cortroller
6.2 Switch Tester

The MN100 can be used to test switches. Two examples for implementing the testing are
shown below.

Figure 6 - Rack and Pinion Figure 7 - Universal Joint

The following is a source listing of a switch tester application using the setup shown in Figure 7
above. You may need to change the following definitions to match your application.

DRIVER_RES

STEP_RATE
o
I SWTESTER.C - Switch Tester
I Date:04-16-97
I
I This program can be used with a MN100 to test pushbutton switches.
o
#include <stdio.h>

#include <conio.h>
#include <dos.h>

#include <stdlib.h>
#include <string.h>

#include “mn_cs.h"

#define MOTOR_RES 200

#define DRIVER_RES 2 // driver resolution (steps/fullstep)
#define STEP_RATE 400 /I steps/sec

/I see mn_cs.h for definitions

#define PORT_ID PORTO /I COM1 - change for your system
#define BAUDRATE B9600 // 9600 Baud (default for MN100)

#define INT_IRQ IRQ4 // use IRQ4

COM com_id;

float distance;
int i, device_flagIMAX_BOARDS];
unsigned char input_stat, last_status;

char command_string[15], data_string[15];

Page 40 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

int

process_rtn_packet(COM, long *);

void perform_operation(long, int, COM);

void main()

{

float dist_left;

long data, steps;

int device_address, num_operations;
int ret, key;

textmode(C80);
clrscr();

com_id = init_com_port(PORT_ID, INT_IRQ, BAUDRATE);

if (com_id == NULL)

{
printf("\n\r Could not initialize com port.");
printf("\n\r Press any key to exit program");
getch();
clrscr();
exit(0);

}

printf("\n\r Checking for an active device.");
check_devices(device_flag, com_id);

device_address = 0;
/[1f multiple devices are connected and active, the

// device with the lowest address will be used.
for (i = 0; i < MAX_BOARDS; i++)

{
if (device_flagl[i])
{
device_address = i;
break;
1
1
if (!device_address)
{
printf("\n\r No active device found. Press any key to exit");
close_com_port(com_id);
getch();
clrscr();
exit(0);
}
clrscr();

send_packet("f1", device_address, com_id); // set profile
process_rtn_packet(com_id, &data);

sprintf(command_string, "v%d", STEP_RATE); // set velocity
send_packet(command_string, device_address, com_id);
process_rtn_packet(com_id, &data);

send_packet("w2", device_address, com_id); // set1/O as input
process_rtn_packet(com_id, &data);

printf("Position plunger using the jog buttons so that the button");
printf("on the switch is fully depressed. Press any any when done.");
getch();

MO009

MicroKinetics Corporation

Page 41

Motionet ™ MN100 Controller

send_packet("l0", device_address, com_id); // init counter to 0
process_rtn_packet(com_id, &data);

steps = DRIVER_RES * MOTOR_RES / 2; // steps per 0.5 revolutions

send_packet("s2", device_address, com_id); / read input status
ret = process_rtn_packet(com_id, &data);

last_status = (unsigned char)data & BITO;

sprintf(command_string, "m%Id", steps);// rotate motor 1/2 rev.

while(1)
{
if (kbhit())
{
key = getch();
if (key == ESC)
break;
1
else
{
clrscr();
printf("\n\r Moving");
send_packet(command_string, device_address, com_id);
ret = process_rtn_packet(com_id, &data);
clrscr();
printf("\n\r Reading Switch");
delay(250);
send_packet("s2", device_address, com_id); / read input status
ret = process_rtn_packet(com_id, &data);
if (ret == VALID_DATA)
{
input_stat = (unsigned char)data & BITO;
if (input_stat == last_status)
{
printf("\n\r switch defective");
break;
1
else
last_status = input_stat;
}
else if (ret == DONE)
continue;
else if (ret < 0x20)
printf("\n\r Error in transmission - %x.", ret);
send_packet("l0", device_address, com_id); // zero position counter
process_rtn_packet(com_id, &data);
1
}
close_com_port(com_id);
1
int process_rtn_packet(COM id, long *data)
{

int return_code, start_flag;
int i, rec_address|[2];
char input_string[15];

while(1)
{

Page 42 MicroKinetics Corporation

Document Revision C5

Motionet ™ MN100 Controller

if (chk_RxD(id)) /I check receive buffer for data

{
return_code = process_char(input_string, id, rec_address);
if (return_code == 0)
continue;
else if (return_code == START)
continue;
else if (return_code == DONE)
break;
else if (return_code == VALID_DATA)
{
i=0;
while (input_string[i+1] = 0)
{

data_string[i] = input_string[i+1];
i++;

1

data_string[i] = O;

*data = atol(data_string);

break;

}

else if (return_code < 0x20)
break;

}
}

return(return_code);

MO009 MicroKinetics Corporation Page 43

Motionet ™ MN100 Controller
6.3 Shape Forming System

Multiple MN100s can be used to bend various materials into a specific shape. An example of
this type of application is shown below.

[+] [=] [=] E'EI ﬂ_’ﬂ ﬂ-’ Elrﬂ [=] [=] [+] [=] [+]
0 A A
5 s o W ok
SIS oY R Ko
= ol

Y

|

AR LAWY (=
J&! PR AR LY

]L\\\\\\\\\\\\\\\\\\\\I _'
%]

i
T T T T [g ﬁ Y

T
H- IS SS S o‘ﬂ T T T T T T
e

Sl /
T H ’ / T
& / / g / g
> N ’ / 4 ’ b, 6
: / 4 S,
SO 7 5
5 v ’ / ﬁ / 7
4 4 7 7 /B
/ ’ 4
o 4 4 4 4 7 B’
2 o " / / / 7 /)
" R 77 ~
" # ’ ’
) 44 4 7 7 N’
¢ 4 / 4 ¢ 4 7 ¢
i H B :]] o :]]

WASTER
the) I I I I I I I I I I

MH100 L1000 K100 MH 00 K100 MH100 WH100 K100 LW 100 LWH 10

|| L T T T T T T T 1 7

CanT
RT

Figure 8 - Shape Forming

The following is a source listing of a shape forming application using the setup shown above.
You may need to change the following definitions to match your application.

DRIVER_RES

REVS_PER_INCH

STEP_RATE
oo
I SHAPEFRM.C - Shape Former example
I Date:04-16-97
I
I This program can be used with multiple MN100s to bend materials
I into a specific shape.

ittt
#include <stdio.h>
#include <conio.h>

Page 44 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

#include <dos.h>

#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#include "'mn_cs.h"
#define MOTOR_RES 200
#define DRIVER_RES 8 /I driver resolution (steps/fullstep)
#define REVS_PER_INCH 10.0f /I number of turns of motor to move device an inch
#define STEP_RATE 4000 /I steps/sec
// see mn_cs.h for definitions
#define PORT_ID PORTO // COM1 - change for your system
#define BAUDRATE B9600 // 9600 Baud (default for MN100)
#define INT_IRQ IRQ4 // use IRQ4
#define Pl 3.141592654f
COM com_id;
double angle_inc;
float distance;
int i, device_flag[MAX_BOARDS];
char command_string[15], data_string[15];
int process_rtn_packet(COM, long *);
void perform_operation(long, int, COM);
void main()
{
long data, steps[MAX_BOARDS];
int device_address[MAX_BOARDS], num_operations;
int device_count;
int key;
textmode(C80);
clrscr();
com_id = init_com_port(PORT_ID, INT_IRQ, BAUDRATE);
if (com_id == NULL)
{
printf("\n\r Could not initialize com port.");
printf("\n\r Press any key to exit.");
getch();
clrscr();
exit(0);
}
clrscr();
printf("\n\r Checking for an active device.");
check_devices(device_flag, com_id);
device_count = 0;
for (i = 0; i < MAX_BOARDS; i++)
if (device_flagl[i])
device_address[device_count++] = i;
if (Idevice_count)
{
printf("\n\r No active device found. Press any key to exit");
close_com_port(com_id);
getch();
clrscr();
exit(0);
}
MO009 MicroKinetics Corporation Page 45

Motionet ™ MN100 Controller

send_packet("f1", 0, com_id); /I set profile
process_rtn_packet(com_id, &data);

sprintf(command_string, "v%d", STEP_RATE); // set velocity
send_packet(command_string, 0, com_id);
process_rtn_packet(com_id, &data);

send_packet("l0", 0, com_id); //initialize position counter to 0
process_rtn_packet(com_id, &data);

send_packet("i0", 0, com_id); // set for absolute mode
process_rtn_packet(com_id, &data);

send_packet("h1", 0, com_id); // enable release mode
process_rtn_packet(com_id, &data);

send_packet("w1", 0, com_id); // set I/O as output and turn off
process_rtn_packet(com_id, &data);

clrscr();
printf("\n\r Enter maximum distance to move (inches): ");
scanf("%f", &distance);

angle_inc = 180.0f/(device_count+1);

for (i = 0; i < device_count; i++)

{
stepsi] = (long)(distance * REVS_PER_INCH * DRIVER_RES * MOTOR_RES);
stepsli] = (long)(stepsli] * sin(P1/180.0f*angle_inc*(i+1)) + 0.5f);

1

for (i = 0; i < device_count; i++)

{
sprintf(command_string, "m%Id", stepsli]);
send_packet(command_string, device_addressi], com_id);
process_rtn_packet(com_id, &data);

1

clrscr();

printf("\n\r Positioning motors.");

send_packet("k", 0, com_id); // enable release mode
process_rtn_packet(com_id, &data);
send_packet("w0", 0, com_id); // turn on output
process_rtn_packet(com_id, &data);

printf("\n\r Output ON!");

delay(5000);

send_packet("w1", 0, com_id); // turn off output
process_rtn_packet(com_id, &data);

printf("\n\r Output OFF!");

printf("\n\r Repositioning to start.");
send_packet("m0", 0, com_id); // return to start
process_rtn_packet(com_id, &data);

send_packet("k", 0, com_id); // send release command
process_rtn_packet(com_id, &data);
send_packet("h0", 0, com_id); // enable release mode
process_rtn_packet(com_id, &data);

close_com_port(com_id);

}
int process_rtn_packet(COM id, long *data)

{

int return_code, start_flag;
int i, rec_address[2];

char input_string[15];
Page 46 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

while(1)
{
if (chk_RxD(id)) /I check receive buffer for data
{
return_code = process_char(input_string, id, rec_address);
if (return_code == 0)
continue;
else if (return_code == START)
continue;
else if (return_code == DONE)
break;
else if (return_code == VALID_DATA)
{
i=1,
while (input_string][i] != 0)
{
data_string[i-1] = input_string[i];
i++;
}
*data = atol(data_string);
break;
}
else if (return_code < 0x20)
{
printf("\n\rError detected or move stopped");
printf("\n\rby external switch closure (%d).", return_code);
getch();
break;
}
}

}

return(return_code);

MO009 MicroKinetics Corporation Page 47

Motionet ™ MA100 Controller
Appendix

Apendix A - Mechanical Drawing

TOP YIEYY

2325 TYP.BOTH SIDES

Hz HE5 :

. " i
e A
| '
o

- 3]
IRIE

0 ong - |-_ 188 T H.L:ansm:E_.-|

o o
o1&y lt
4 P LACES
= FRONT YIEW
P 5
— _:uuuuuauuu.n.
7 I O[THMOTTO[TIT i
i

Page 48 MicroKinetics Corporation DocumentRevision C5

Motionet ™ MN100 Controller

Apendix B - Connector Pin Descriptions

Pin # H1 Description (MN100X only)
Step

Direction

+5VDC

ON Fullstep

Fault

Ground

OOk wWN =

Pin # H2 Description
-Limit
+Limit
Abort
Feedhold
-Jog

+Jog

I/O or Run
Ground
Ground
+5VDC

O©OoONOOOGA~WN =

—
o

Pin # H3 Description
1 Vmm
2 Ground
3 +5VDC

Pin # H4 Description (MN100U only)
1 Vmm

2 Ground

3 Ground

4 +5VDC

5

6

Step
Direction

Pin # H5 Description
1 RS485+
2 RS485-
3 Ground

MO009 MicroKinetics Corporation Page 49

